全网所有网赌网址大全-澳门十大网赌排行榜-信誉认证
简体中文
English
Home
About us
Research
Faculty
Graduate
Admission
Join Us
Open Class
Advanced Materials & New Energy & New Culture
Home
>
Advanced Materials & New Energy & New Culture
>
Content
Singular characteristics and unique chemical bond activation mechanisms
Published:2012-11-26 10:28:00 From:Editor hits:
The field of heterogeneous photocatalysis has almost exclusively focused on semiconductor photocatalysts. Herein, we show that plasmonic metallic nanostructures represent a new family of photocatalysts. We demonstrate that these photocatalysts exhibit fundamentally different behaviour compared with semiconductors. First, we show that photocatalytic reaction rates on excited plasmonic metallic nanostructures exhibit a super-linear power law dependence on light intensity (rate ∝intensity
n
, with
n
> 1), at significantly lower intensity than required for super-linear behaviour on extended metal surfaces. We also demonstrate that, in sharp contrast to semiconductor photocatalysts, photocatalytic quantum efficiencies on plasmonic metallic nanostructures increase with light intensity and operating temperature. These unique characteristics of plasmonic metallic nanostructures suggest that this new family of photocatalysts could prove useful for many heterogeneous catalytic processes that cannot be activated using conventional thermal processes on metals or photocatalytic processes on semiconductors.
More:
Full Text
Declaration:
This article reprint is merely of spread information needs, does not mean that represent this website to view or confirm the authenticity of its contents, Like any other media, websites or individuals from the websites use, must keep this website marked "source".
prev:
Super Material Can Stop Speeding Bullet
next:
Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping