全网所有网赌网址大全-澳门十大网赌排行榜-信誉认证
简体中文
English
Home
About us
Research
Faculty
Graduate
Admission
Join Us
Open Class
Advanced Materials & New Energy & New Culture
Home
>
Advanced Materials & New Energy & New Culture
>
Content
Ferroelectric order in individual nanometre-scale crystals
Published:2012-12-26 08:47:00 From:Editor hits:
Ferroelectricity in finite-dimensional systems continues to arouse interest, motivated by predictions of vortex polarization states and the utility of ferroelectric nanomaterials in memory devices, actuators and other applications. Critical to these areas of research are the nanoscale polarization structure and scaling limit of ferroelectric order, which are determined here in individual nanocrystals comprising a single ferroelectric domain. Maps of ferroelectric structural distortions obtained from aberration-corrected transmission electron microscopy, combined with holographic polarization imaging, indicate the persistence of a linearly ordered and monodomain polarization state at nanometre dimensions. Room-temperature polarization switching is demonstrated down to ~5?nm dimensions. Ferroelectric coherence is facilitated in part by control of particle morphology, which along with electrostatic boundary conditions is found to determine the spatial extent of cooperative ferroelectric distortions. This work points the way to multi-Tbit/in2 memories and provides a glimpse of the structural and electrical manifestations of ferroelectricity down to its ultimate limits.
More:
Full Text
Declaration:
This article reprint is merely of spread information needs, does not mean that represent this website to view or confirm the authenticity of its contents, Like any other media, websites or individuals from the websites use, must keep this website marked "source".
prev:
Water Desalination across Nanoporous Graphene
next:
Cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous